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1. Motivation (our playground © ) : Management of Energy
Systems under Ambient Conditions Uncertainty
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N
Ambient Condition Effects in Energy Systems

Operation of Energy Systems is Strongly Affected by
Ambient Conditions

- Power Grid Management: Predict Spatio-Temporal
Demands (Douglas, et.al. 1999)

- Power Plants: Generation levels affected by air humidity
and temperature (General Electric)

- Petrochemical: Heating and Cooling Utilities (ExxonMobil) E‘-’=~ ‘
- Buildings: Heating and Cooling Needs (Braun, et.al. 2004)

- (Focus) Next Generation Energy Systems assume a

major renewable energy penetration: Wind + Solar + Fossil
(Beyer, et.al. 1999)

- Increased reliance on renewables must
account for variability of ambient conditions,
which cannot be done deterministically ...

Power [MW]

- We must optimize operational and planning
decisions accounting for the uncertainty in
ambient conditions (and others, e.g. demand)

- Optimization Under Uncertainty. o w w Tig‘gm” B W
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2. Impact: Stochastic Unit Commitment — Management of
Energy Systems




Stochastic Predictive Control
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Stochastic Unit Commitment with Wind Power (SAA)
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=  Wind Forecast — WRF(Weather Research and Forecasting) Model
— Real-time grid-nested 24h simulation

— 30 samples require 1h on 500 CPUs (Jazz@Argonne) o )
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Wind power forecast and stochastic programming

= Unit commitment & energy dispatch with uncertain wind
power generation for the State of lllinois, assuming 20% wind
power penetration, using the same windfarm sites as the onr
existing today.

wind
power

=Full integration with 10 thermal units to meet demands.
Consider dynamics of start-up, shutdown, set-point changes

= The solution is only 1% more expensive then the one with
exact information. Solution on average infeasible at 10%.
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Some Considerations in Using Supercomputing for Power
Grid

= |s it really worth using a supercomputer for this task? (We need the answer every
1hr with 24 hour time horizons. )

= Let’s look at the most pressing item of Supercomputing usage: power.

— BG/P (and exascale) needs <~ 20MW of power.

— The Midwest US has 140GW of power installed, and the peak demands runs up to
110GW.

— We will never reduce power consumption, but we will make it more reliable, less
dependent on fossil, and cheaper by better managing the peak
= |f we accept this will lead to 10% more renewable penetration (our SUC study),
then this is worth on the order of 10-15GW, far above what BG/P costs in power
consumption.

= |n addition operational constraints makes supercomputing (if uncertainty needed
to account for) necessary and not just useful or convenient.

= But, even if approximations will work, this tool will be helpful as the “gold
standard” for validating other algorithms to be deployed on defined
computational resources.
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3. Secondary Impacts
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New Platform: Optimization under Uncertainty for Next-

Generation Building Systems

Deployment of Proactive Systems at Argonne National Laboratory
- Integrates New Sensors, Statistical Models, and Real-Time Optimization
- Tests in Commercial-Sized Building : ~ 500 Occupants, ~100,000 sq. ft.
- Energy Savings of Up to 30% in HVAC Energy Demand

- Key: Anticipation Using Occupancy & Weather Information

- Key: Adaptive Comfort and Equipment Conditions (Set-Points)

- Key: Maximize Ambient Air Intake to Condition Building ‘

-Key: Provide algorithms for limited computational resources W\ "
“in thermostat”

Predicted Energy Savings at Argonne’s Building

Stochastic Real-Time Optimization for Building Systems 40
Minimize operation cost 350
Subject to: Comfort and Hardware Constraints.

Uncertainty: occupancy, ambient conditions, state
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*Data Analysis and Storage
(~1,000 Sensors per Building at High-Frequencies)
Statistical and Gray-Box Modeling

(Minimize Technology Cost, Uncertainty Estimates) 50

*Resiliency Requirements
(Sustain Frequent Sensor and Equipment Faults)
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Hybrid Photovoltaic-H, System
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* Operating Costs Driven by Uncertain Radiation uieberg, 2004
* Performance Deteriorates by Multiple Power Losses

Problem: Operate to Minimize Operating Costs +
Maximize H, Production

Model: - _
Subject to: Energy Balances; State-of-Charge, Fuel Cell

and Electrolyzer Limits
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Hybrid Photovoltaic-H, System

Load Satisfaction Deterministic (“Optimization on Mean”) vs. Stochastic

Deterministic Fails to Satisfy Load
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Therefore, the alternative to stochastic programming can turn out infeasible !!

Handling Stochastic Effects Particularly Critical in Grid-Independent Systems

Mihai Anitescu - Optimization under uncertainty
12



3. Our Technology:

PIPS-I (Parallel Interior Point Stochastic Programming)
PIPS-S (Parallel Simplex for Stochastic Programming)

Mihai Anitescu - Optimization under uncertainty
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PIPS — Our Scalable Stochastic Programming Solver Using
Direct Schur Complement Method
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Implicit factorization, C is dense, H’s are sparse.
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Stochastic programming — a non-trivial parallel paradigm

suitable for next-generation supercomputers
2"d stage computations

= Computational pattern Optimization
15t stage computations I ;

Optimization

Deterministic model

Optimization

L]

= Extra, in-node parallelization can be obtained for both 1%t and 29 stage.

= Algorithmic developments are needed to ensure efficient communication, fault
resilience and good load balancing.

= Same pattern for statistical model CALIBRATION.

Mihai Anitescu - Optimization under uncertainty
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Parallelizing the 15t stage linear algebra

We distribute the 15t stage Schur complement system.

0 4 | -
0
C= 4 0 ,Q dense symm. pos. def., Ao sparse full rank.
0

= Cistreated as dense.

= Alternative to PSC for problems with large number of 1%t stage variables.

= Removes the memory bottleneck of PSC and DSC.

= We investigated Scalapack, Elemental (successor of PLAPACK)
— None have a solver for symmetric indefinite matrices (Bunch-Kaufman);
— LU or Cholesky only.
— So we had to think of modifying either.

Mihai Anitescu -- Stochastic Programming
16



Cholesky-based LDL"like factorization
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Can be viewed as an “implicit” normal equations approach.

= In-place implementation inside Elemental: no extra memory needed.

= |dea: modify the Cholesky factorization, by changing the sign after processing p
columns.

= |t is much easier to do in Elemental, since this distributes elements, not blocks.

= Twice as fast as LU

=  Works for more general saddle-point linear systems, i.e., pos. semi-def. (2,2) block.

Mihai Anitescu -- Stochastic Programming



PIPS Solver Capabilities
Hybrid MPI1/SMP running on Blue Gene/P

— Successfully (though incompletely due to allocation limit) run on up to 32,768 nodes (96% strong
scaling) for lllinois problem with grid constraints. 3B variables, maybe largest ever solved?

Handles up to 100,000 first-stage variables. Previous results dealt with O(20-50).

Close to real-time solutions (6 hr horizon in 1 hr wallclock; with REAL network, 32K
scenarios)
— Further development needed, since users aim for
e More uncertainty, more detail (x 10)
e Faster Dynamics = Shorter Decision Window (x 10)

e Longer Horizons (California == 72 hours) (x 3)

Mihai Anitescu - Optimization under uncertainty
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Components of Execution Time and Strong Scaling

1400 — Strong Scaling
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= 32K nodes=130K cores (80% BG/P)
= “Backsolve” phase embarrassingly parallel, but not Schur Complement (SC)
= Communication for “Distrib. SC” not yet a bottleneck, but we will get there.

Mihai Anitescu - Optimization under uncertainty
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4. Our projects

Mihai Anitescu - Optimization under uncertainty
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Current Sources:

= Office of Science ASCR sources: “we enable” we can get close to the problem, find

scalable algorithmic patterns, demonstrate them, but the funds are for MATH and
SCALABLE ALGORITHMS not to solve a problem.

— The M2ACS center: Multifaceted mathematics
— Stochastic Dynamic Optimization
— Early Career -- Stochastic Programming (Zavala).

= OE sources: we actually model actual networks generators problems, etc.
= LDRD (primary) and (a bit) of EERE for solar forecasting/modeling.

= To solve REAL problems, we typically need more modeling/forecasting resources.

Mihai Anitescu - Optimization under uncertainty



Anitescu: Multifaceted Mathematics for Complex Energy
Systems -M2ACS

Summary:
= A17.5M S investment 2012-2016: ANL, PNNL, SNL, UW, UC lead by MA>

= Focuses on the grand challenges of analysis, design, planning, maintenance, and
operation of electrical energy systems and related infrastructure in the presence
of rapidly increasingly complexity of the systems.
= Four mathematical areas identified:
— Predictive modeling that accounts for uncertainty and errors

— Mathematics of decisions that allow hierarchical, data-driven and real-time decision
making

— Scalable solution algorithms for optimization and dynamic simulation
— Integrative frameworks leveraging model reduction and multiscale analysis
= Mathematical aspects include: discrete and continuous optimization, dynamical

systems, multi-level techniques, data-driven methods, graph-theoretical methods,
and stochastic and probabilistic approaches for uncertainty and error.

=  Mathematics addresses a broad class of complex energy systems subchallenges

22



Application Domain Subchallenges

= 1. Integrated Energy Resource Planning under Sustainability Considerations

= 2. Next-Generation Energy Delivery Architecture Design

= 3. Real-Time Interconnect-wide Monitoring and Predictive Operation

= 4, Predictive Control of Cascading Blackouts and Real-Time Contingency Analysis.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"
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The time scales challenge (courtesy DeMarco)

Closed-loop
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Go to “Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"
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Integration Concept:

By constant interaction of the math teams at each iteration and by gauging
performance on subchallenges, integration will be achieved.

Math. of

DOE Grand

Challenge

Go to "Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"
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Anitescu Team: Topic Structure
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5. Some Accomplishments

Go to “Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"
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“Real-time Optimization of Energy Systems under Uncertainty”

Mihai Anitescu, Cosmin Petra (MCS/ANL)

Scientific Objectives

Develop scalable algorithms on HPC architectures for
real-time electricity resource optimization under
uncertainty.

Such advances are required to solve the stochastic
energy dispatch problem: determining optimal output of
a number of electricity generation facilities, to meet the
system load, while accounting for renewable energy
uncertainty (variability)

Accomplishments

Novel incomplete augmented sparse factorization
approach uses the cores very efficiently and fully
exploits the sparsity.

A strong scaling solution resulting in one order of
magnitude reduction in time-to-solution on “Intrepid”
BG/P for lllinois energy dispatch problem with
transmission and 32K wind scenarios (4B unknowns) in
operator’s realtime (<1h)

DOE INCITE Award 2012-2013 (24M core hours)

Scaling efficiency up to 131,072 cores on BG/P
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- Linear system
e — 3.89 billion unknowns
-g — 1.81 billion constraints
;’f:
Perfect scaling Economic dispatch
Optimization - 2.08 billion unknown
—— Linear algebra - 1.81 billion constrain}
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4k 8k 16k 32k

Number of nodes and stochastic scenarios

Unprecedented Scalability for This Problem Class and Size

Impact

= The ability to accommodate more scenarios in real
time gets us much closer to the ideal solution of the
stochastic dispatch problem.
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Stochastic Power Grid Model

Pacific Northwest
NATIONAL LABORATORY

‘ Novel Ideas
PDF method with Large-Eddy-Diffusivity (LED) closure

15 15 ‘ 15 ‘
i ) , yields closed form equations for:
- - - * Full statistics of system states
! 2 30 Q ! 2 30 Q ! 2 30 Q
Gl C] €]

* Random input parameters with arbitrary

N I N - ] I correlation (standard Fokker-Plank equation is
' ] . J only applicable for uncorrelated inputs)

U\S ‘0”15 X ”15
: L F ' Power grid:

y [ L E I &= - Probabilistic stability analysis

Joint PDF of angular velocity and phase angle at * Optimization under uncertainty
three different times
Impact and Champions Milestones/Dates/Status
Scheduled Actual

1. New stochastic Probability Density Function

. hasti | of
(PDF) method for generalized Langevin Stochastic model of one

equations. generator and one load SEP 2012 SEP 2012
» Submission to SIAM J. UQ MAR 2013
2. PDF method provides closed-form equation  Extension to multi-generators
for joint PDF of Langevin eq. colored noise. and loads FEB 2014 FEB 2014

3. One of the first stochastic power-grid models.

4. Probabilistic stability analysis for power grid.

Principal Investigator: Z. Huang, A.M. Tartakovsky, PNNL

January 9th, 2013
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Conclusions

=  Complex energy systems pose an enormous number of modeling and simulation
challenges.

=  Computational Power will help, but it will not alone address many of the
challenges.

= To demonstrate our tools on real systems, we need more system/environment
modeling efforts and resources.

= This research requires sustained, multi-area, integrative thinking in mathematics.

= Increases focus on area of mathematics that were not explored up to this point
and creates opportunities for FUNDAMENTAL math advances:

= Examples: resampling in stoch prog for expensive scenarios; stochastic
preconditioning, fast nonlinear programming.

= We expect many more such challenges, as embodied in our MACS center.
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